Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Am Soc Nephrol ; 33(4): 786-808, 2022 04.
Article in English | MEDLINE | ID: covidwho-2141050

ABSTRACT

BACKGROUND: The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS: We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS: We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS: The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.


Subject(s)
Glomerular Filtration Barrier , Microfilament Proteins , Podocytes , Animals , Glomerular Filtration Barrier/metabolism , Integrins/metabolism , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Podocytes/metabolism
2.
Int J Infect Dis ; 116: 258-267, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1693397

ABSTRACT

OBJECTIVE: The mortality rate for critically ill COVID-19 cases was more than 80%. Nonetheless, research about the effect of common respiratory diseases on critically ill COVID-19 expression and outcomes is scarce. DESIGN: We performed proteomic analyses on airway mucus obtained by bronchoscopy from patients with severe COVID-19, or induced sputum from patients with chronic obstructive pulmonary disease (COPD), asthma, and healthy controls. RESULTS: Of the total identified and quantified proteins, 445 differentially expressed proteins (DEPs) were found in different comparison groups. In comparison with COPD, asthma, and controls, 11 proteins were uniquely present in COVID-19 patients. Apart from DEPs associated with COPD versus controls and asthma versus controls, there was a total of 59 DEPs specific to COVID-19 patients. Finally, the findings revealed that there were 8 overlapping proteins in COVID-19 patients, including C9, FGB, FGG, PRTN3, HBB, HBA1, IGLV3-19, and COTL1. Functional analyses revealed that most of them were associated with complement and coagulation cascades, platelet activation, or iron metabolism, and anemia-related pathways. CONCLUSIONS: This study provides fundamental data for identifying COVID-19-specific proteomic changes in comparison with COPD and asthma, which may suggest molecular targets for specialized therapy.


Subject(s)
Asthma , COVID-19 , Pulmonary Disease, Chronic Obstructive , Critical Illness , Humans , Microfilament Proteins/metabolism , Proteomics , SARS-CoV-2 , Sputum
3.
Int J Mol Sci ; 23(3)2022 Jan 29.
Article in English | MEDLINE | ID: covidwho-1667193

ABSTRACT

Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.


Subject(s)
COVID-19/metabolism , Elastin/physiology , Extracellular Matrix/physiology , Animals , Elastic Tissue/metabolism , Elastin/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Traps/metabolism , Fibrillins/metabolism , Humans , Lung/pathology , Microfibrils/metabolism , Microfilament Proteins/metabolism , Neutrophils , Protein-Lysine 6-Oxidase/metabolism , SARS-CoV-2/pathogenicity , Tropoelastin/metabolism
4.
Elife ; 112022 01 25.
Article in English | MEDLINE | ID: covidwho-1662829

ABSTRACT

The human proteome is replete with short linear motifs (SLiMs) of four to six residues that are critical for protein-protein interactions, yet the importance of the sequence surrounding such motifs is underexplored. We devised a proteomic screen to examine the influence of SLiM sequence context on protein-protein interactions. Focusing on the EVH1 domain of human ENAH, an actin regulator that is highly expressed in invasive cancers, we screened 36-residue proteome-derived peptides and discovered new interaction partners of ENAH and diverse mechanisms by which context influences binding. A pocket on the ENAH EVH1 domain that has diverged from other Ena/VASP paralogs recognizes extended SLiMs and favors motif-flanking proline residues. Many high-affinity ENAH binders that contain two proline-rich SLiMs use a noncanonical site on the EVH1 domain for binding and display a thermodynamic signature consistent with the two-motif chain engaging a single domain. We also found that photoreceptor cilium actin regulator (PCARE) uses an extended 23-residue region to obtain a higher affinity than any known ENAH EVH1-binding motif. Our screen provides a way to uncover the effects of proteomic context on motif-mediated binding, revealing diverse mechanisms of control over EVH1 interactions and establishing that SLiMs can't be fully understood outside of their native context.


Subject(s)
Actins/metabolism , Binding Sites , DNA-Binding Proteins/metabolism , Microfilament Proteins/metabolism , Proline/metabolism , Cell Adhesion Molecules/metabolism , HEK293 Cells , Humans , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL